Cree® XLamp® XM-L LEDs

PRODUCT DESCRIPTION

The XLamp XM-L LED is the industry's highest performance, single-die white lighting-class LED. The XLamp XM-L is 20% more efficient than the XLamp XP-G at the same current, and can deliver 1000 lumens with 100 lumens per watt efficacy. The XLamp XM-L LED offers Cree's industry-leading features: wide viewing angle, symmetrical package, unlimited floor life and electrically neutral thermal path.

XLamp XM-L LEDs can enable LED light into new applications that require tens of thousands of lumens, such as high bay and high-output area lighting. The XM-L is also the ideal choice for lighting applications where high light output and maximum efficacy are required, such as LED light bulbs, outdoor lighting, portable lighting, indoor lighting and solar-powered lighting.

FEATURES

- Maximum drive current: 3000 mA
- Low thermal resistance: 2.5 °C/W
- Maximum junction temperature: 150 °C
- Viewing angle: 125°
- Available in cool white, 80-CRI minimum neutral white and 80-CRI, 85-CRI and 90-CRI warm white
- ANSI-compatible chromaticity bins
- Unlimited floor life at ≤ 30 °C/85% RH
- Reflow solderable - JEDEC J-STD-020C
- Electrically neutral thermal path
- RoHS- and REACh-compliant
- UL-recognized component (E349212)

TABLE OF CONTENTS

- Characteristics 2
- Flux Characteristics 3
- Relative Spectral Power Distribution 4
- Relative Flux vs. Junction Temperature 4
- Electrical Characteristics 5
- Relative Flux vs. Current 5
- Relative Chromaticity vs. Current (Cool White) 6
- Relative Chromaticity vs. Temperature (Cool White) 6
- Relative Chromaticity vs. Current (Warm White) 7
- Relative Chromaticity vs. Temperature (Warm White) 7
- Typical Spatial Distribution 8
- Thermal Design 8
- Reflow Soldering Characteristics 9
- Notes ... 10
- Mechanical Dimensions 11
- Tape and Reel 12
- Packaging 13
CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Unit</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance, junction to solder point</td>
<td>°C/W</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viewing angle (FWHM)</td>
<td>degrees</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient of voltage</td>
<td>mV/°C</td>
<td>-2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD withstand voltage (HBM per Mil-Std-883D)</td>
<td>V</td>
<td>8000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC forward current</td>
<td>mA</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>V</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage (@ 700 mA)</td>
<td>V</td>
<td>2.9</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Forward voltage (@ 1500 mA)</td>
<td>V</td>
<td>3.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage (@ 3000 mA)</td>
<td>V</td>
<td>3.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED junction temperature</td>
<td>°C</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flux Characteristics ($T_j = 25 ^\circ C$)

The following table provides several base order codes for XLamp XM-L LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XLamp XM-L Binning and Labeling document.

<table>
<thead>
<tr>
<th>Color</th>
<th>CCT Range</th>
<th>Base Order Codes</th>
<th>Calculated Minimum Luminous Flux (lm)*</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
<td>Group</td>
<td>Flux (lm) @ 700 mA</td>
</tr>
<tr>
<td>Cool White</td>
<td>5000 K</td>
<td>8300 K</td>
<td>T5</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T6</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U2</td>
<td>300</td>
</tr>
<tr>
<td>Neutral White</td>
<td>3700 K</td>
<td>5000 K</td>
<td>T4</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T5</td>
<td>260</td>
</tr>
<tr>
<td>80-CRI White</td>
<td>2600 K</td>
<td>4300 K</td>
<td>T2</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T3</td>
<td>220</td>
</tr>
<tr>
<td>Warm White</td>
<td>2600 K</td>
<td>3700 K</td>
<td>T2</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T3</td>
<td>220</td>
</tr>
<tr>
<td>85-CRI White</td>
<td>2600 K</td>
<td>3200 K</td>
<td>S4</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S5</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S6</td>
<td>182</td>
</tr>
<tr>
<td>90-CRI White</td>
<td>2600 K</td>
<td>3200 K</td>
<td>S4</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S5</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S6</td>
<td>182</td>
</tr>
</tbody>
</table>

Notes:
- Cree maintains a tolerance of ± 7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and ± 2 on CRI measurements.
- Typical CRI for Cool White (5000 K – 8300 K CCT) is 65.
- Typical CRI for Neutral White (3700 K – 5000 K CCT) is 75.
- Typical CRI for Warm White (2600 K – 3700 K CCT) is 80.
- Minimum CRI for 80-CRI White is 80.
- Minimum CRI for 85-CRI White is 85.
- Minimum CRI for 90-CRI White is 90.
* Calculated flux values are for reference only.
RELATIVE SPECTRAL POWER DISTRIBUTION

![Graph showing relative spectral power distribution for different CCTs.]

RELATIVE FLUX VS. JUNCTION TEMPERATURE ($I_f = 700\ mA$)

![Graph showing relative flux vs. junction temperature.]

Copyright © 2010-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc.
ELECTRICAL CHARACTERISTICS ($T_J = 25 \, ^\circ C$)

![Graph showing electrical characteristics]

RELATIVE FLUX VS. CURRENT ($T_J = 25 \, ^\circ C$)

![Graph showing relative flux vs. current]
RELATIVE CHROMATICITY VS. CURRENT (COOL WHITE)

Cool White

RELATIVE CHROMATICITY VS. TEMPERATURE (COOL WHITE)

Cool White
RELATIVE CHROMATICITY VS. CURRENT (WARM WHITE)

Warm White

RELATIVE CHROMATICITY VS. TEMPERATURE (WARM WHITE)

Warm White
TYPICAL SPATIAL DISTRIBUTION

![Typical Spatial Distribution Graph]

THERMAL DESIGN

The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.

![Thermal Design Graph]
REFLOW SOLDERING CHARACTERISTICS

In testing, Cree has found XLamp XM-L LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used.

Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment.

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Lead-Based Solder</th>
<th>Lead-Free Solder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Ramp-Up Rate (Ts_{max} to Tp)</td>
<td>3 °C/second max.</td>
<td>3 °C/second max.</td>
</tr>
<tr>
<td>Preheat: Temperature Min (Ts_{min})</td>
<td>100 °C</td>
<td>150 °C</td>
</tr>
<tr>
<td>Preheat: Temperature Max (Ts_{max})</td>
<td>150 °C</td>
<td>200 °C</td>
</tr>
<tr>
<td>Preheat: Time (ts_{min} to ts_{max})</td>
<td>60-120 seconds</td>
<td>60-180 seconds</td>
</tr>
<tr>
<td>Time Maintained Above: Temperature (T_L)</td>
<td>183 °C</td>
<td>217 °C</td>
</tr>
<tr>
<td>Time Maintained Above: Time (t_L)</td>
<td>60-150 seconds</td>
<td>60-150 seconds</td>
</tr>
<tr>
<td>Peak/Classification Temperature (Tp)</td>
<td>215 °C</td>
<td>260 °C</td>
</tr>
<tr>
<td>Time Within 5 °C of Actual Peak Temperature (tp)</td>
<td>10-30 seconds</td>
<td>20-40 seconds</td>
</tr>
<tr>
<td>Ramp-Down Rate</td>
<td>6 °C/second max.</td>
<td>6 °C/second max.</td>
</tr>
<tr>
<td>Time 25 °C to Peak Temperature</td>
<td>6 minutes max.</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>

Note: All temperatures refer to the topside of the package, measured on the package body surface.
NOTES

Lumen Maintenance Projections

Please read the XLamp Long-Term Lumen Maintenance application note at www.cree.com/xlamp_app_notes/lumen_maintenance for more details on Cree’s lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note at www.cree.com/xlamp_app_notes/thermal_management for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

Moisture Sensitivity
In testing, Cree has found XLamp XM-L LEDs to have unlimited floor life in conditions ≤30 °C/85% relative humidity (RH). Moisture testing included a 168-hour soak at 85 °C/85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage.

Cree recommends keeping XLamp LEDs in their sealed moisture-barrier packaging until immediately prior to use. Cree also recommends returning any unused LEDs to the resealable moisture-barrier bag and closing the bag immediately after use.

RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Ecology section of www.cree.com.

REACH Compliance
REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notices of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACH Declaration. Historical REACH banned substance information (substances restricted or banned in the EU prior to 2010) is also available upon request.

UL Recognized Component
Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.

Vision Advisory Claim
WARNING: Do not look at exposed lamp in operation. Eye injury can result. See the LED Eye Safety application note at www.cree.com/xlamp_app_notes/led_eye_safety.
MECHANICAL DIMENSIONS

All measurements are ±.13 mm unless otherwise indicated.

Top View

Side View

Bottom View

Recommended PCB Solder Pad

Recommended Stencil Pattern
(Shaded Area Is Open)
TAPE AND REEL

All Cree carrier tapes conform to EIA-481D, Automated Component Handling Systems Standard.

All dimensions in mm.
PACKAGING

Unpackaged Reel

Packaged Reel

Boxed Reel

Label with Cree Bin Code, Qty, Reel ID

Label with Cree Bin Code, Qty, Reel ID

Label with Cree Bin Code, Qty, Reel ID

Label with Cree Order Code, Qty, Reel ID, PO #

Label with Cree Order Code, Qty, Reel ID, PO #

Label with Cree Bin Code, Qty, Reel ID

Patent Label

Patent Label

Copyright © 2010-2013 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo and XLamp® are registered trademarks of Cree, Inc.